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Inelastic electron tunneling spectroscopy (IETS) [R. C. Jaklevic and J. Lambe, Phys. Rev. Lett.

17, 1139 (1966); R. G. Keil et al., Appl. Spectrosc. 30, 1 (1976); K. W. Hipps and U. Mazur, J.

Phys. Chem. 97, 7803 (1993); U. Mazur et al., Anal. Chem. 64, 1845 (1992); P. K. Hansma,

Tunneling Spectroscopy (Plenum, New York, 1982)] measurements are performed on Si

nanowire (NW)/SiO2/Al NW tunnel junctions. The tunnel junction area is �50� 120 nm and

tunneling occurs across a 10 nm thick SiO2 layer. IETS measurements are performed at 300 K for

ammonium hydroxide (NH4OH), acetic acid (CH3COOH), and propionic acid (C3H6O2)

molecules. The I–V, dI/dV–V, and d2I/dV2–V characteristics of the tunnel junction are

measured before and after the adsorption of molecules on the junction using vapor treatment or

immersion. Peaks can be observed in the d2I/dV2–V characteristics in all the cases following

molecules adsorption. These peaks may be attributed to vibrational modes of N–H and C–H

bonds. VC 2014 American Vacuum Society. [http://dx.doi.org/10.1116/1.4897137]

I. INTRODUCTION

Inelastic electron tunneling spectroscopy (IETS) pro-

vides a means to characterize the phonon spectrum of mole-

cules by measuring phonon-assisted tunneling current

through a potential barrier impregnated with the molecules

of interest.1–5 Traditionally, this technique has used metal/

insulator/metal (MIM) junctions and molecules are

adsorbed on to the insulator during junction fabrication. At

low applied voltage V, tunneling through the barrier is elas-

tic. However, inelastic tunneling caused by electron inter-

action with vibrational states in the adsorbed molecules

creates additional conduction channels, with a change in

energy �hx. These lead to peaks in the d2I/dV2 vs V charac-

teristics for each additional channel, providing a spectrum

of the molecular vibrational modes (Fig. 1). As energy sep-

arations in the vibrational spectrum are relatively small

compared to the electronic spectrum, in many cases the full

vibrational spectrum can be measured only at low tempera-

ture4 <30 K. However, it may be possible to measure part

of the spectrum even at room temperature, raising the possi-

bility of a molecular detector.

IETS may provide a spectroscopic technique with high

sensitivity and selectivity6 for gas sensing.7 However, the

use of IETS for sensing applications requires molecule

adsorption only after device fabrication. Bommisetty et al.
have measured and contrasted the full IETS characteristics

for an NH3 doped, 20� 20 lm Al/Al2O3/Pb junction at

4 K, with the corresponding characteristic at 300 K.7,8

Two large peaks corresponding to Al-O and NH3 phonons

persist even at 300 K, providing a means to identify the

underlying molecules bonds.8 More recently, the IETS

molecular spectra have been measured using scanning

tunneling microscopy (STM–IETS).9–11 This allows the

characterization of single molecules with simultaneous

imaging of the surface with atomic resolution,9 e.g., STM

measurements have been performed on single acetylene

molecules.9 Single molecule spectra have also been

measured using micrometer scale metal/molecule/metal

junction measurements of alkyl and p-conjugated

molecules,12 and nanoscale alkanedithiol monolayers.13

In this paper, IETS measurements are presented for

nanoscale semiconductor/insulator/metal tunnel junctions

[Si nanowire (NW)/SiO2/Al NW] (Fig. 2). Our use of a Si

NW provides a means to define a more robust tunnel junc-

tion with the potential for gate control. The molecules of in-

terest are adsorbed on to the insulator after device

fabrication. At low applied voltage, the tunneling process is

similar to a MIM device. However, as the applied voltage

increases, the electrical characteristics are affected by the

Schottky barrier formed at the Si NW surface. With a

reverse biased Schottky barrier, IETS peaks may be meas-

ured at reduced current, with less likely hood of damaging

the tunnel junctions.

IETS measurements are performed on well-

characterized molecules such as NH4OH, CH3COOH, and

C3H6O2 at room temperature. The I–V, dI/dV–V, and d2I/
dV2–V characteristics of the tunnel junction are measured

before and after the adsorption of the ammonium hydroxide

(NH4OH), acetic acid (CH3COOH), and propionic acid

(C3H6O2) molecules using vapor treatment for NH4OH

molecules and immersion for CH3COOH and C3H6O2

molecules.

II. FABRICATION

Nanoscale (Si NW/SiO2/Al NW) tunnel junctions were

fabricated using electron beam lithography (EBL). Here, the

Si NW (Refs. 14–16) was fabricated in heavily doped n-type

silicon-on-insulator (SOI) material (doping density

�1019–1020/cm3). Spin-on-doping was used to dope the top

Si of the SOI material. Following this, a nanowire pattern

was written using EBL in PMMA resist with a molecular

weight of 950 000, diluted 2% in Anisole. A 40 nm thick Ala)Electronic mail: y.hamidi-zadeh10@imperial.ac.uk
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layer was then evaporated and lift-off used to create a

�50 nm wide Al NW. This created a hard mask for reactive

ion etching (RIE) of the top Si layer. SF6 was used as the

RIE gas at 100mTorr for 40 s, at RF power of 100 W and an

etch depth of 200 nm was obtained. The Al mask was then

removed using wet etching for 30 s. Here, the wet-etch con-

tained mixtures of 1%–5% HNO3 for Al oxidation,

65%–75% H3PO4 to dissolve the Al2O3, 5%–10%

CH3COOH for wetting and buffering and H2O dilution. Si

NWs with lengths �1 lm and widths down to �50 nm were

fabricated by this process. The NWs were then thermally

oxidized at 1000 �C to create a SiO2 surface layer �10 nm

thick. A second EBL stage was then used to define a 40 nm

thick and �120 nm wide Al NW such that it crossed the Si

NW, forming the nanoscale Si NW/SiO2/Al NW tunnel junc-

tion. Figure 3 shows scanning electron micrograph (SEM) of

a complete device.

The reduction in device dimension to the nanoscale is

expected to increase the sensitivity of the device to mole-

cules adsorbed on the tunnel junction. Various mechanisms

are possible for adsorption of molecules on the tunnel junc-

tion: The top Al layer is only �40 nm thick and can be po-

rous.17–20 Molecules can then diffuse through the pores in a

manner similar to previous work on large area IETS struc-

tures with thin Al contacts (�50 nm).19 In particular, mole-

cules in the presence of water vapor can penetrate the top

metal of the completed tunnel junction more easily.17–20 A

second possible mechanism, involves the deposition and dif-

fusion of molecules from the exposed SiO2 surface at the

side edges of the tunnel junction. Furthermore, the use of

SOI material raises the possibility of back gate control of the

NW carrier concentration, and hence of the IETS

characteristics.

III. MEASUREMENT

IETS measurements were performed at room tempera-

ture by using an Agilent 4155B parameter analyzer to

obtain four terminal I–V characteristics (1000 measurement

points). The dI/dV–V and d2I/dV2–V characteristics were

then calculated from the data. The noise floor in our I–V
measurement was �10 pA, allowing direct extraction of

d2I/dV2–V curves. Tunneling spectra were measured for

NH4OH, CH3COOH, and C3H6O2. Here, NH4OH was de-

posited on the device by vapor treatment and CH3COOH

and C3H6O2 by immersion. The four-terminal measurement

circuit is shown in Fig. 4(a). Current was forced through

the tunnel junction using terminals 2 (Al NW) and 1 (Si

NW) and the voltage was measured between terminals 4

(Al NW) and 3 (Si NW).

A. Ammonium hydroxide (NH4OH)

Electrical characteristics of a “clean” tunnel junction

were measured first at 300 K. The dI/dV–V and d2I/dV2–V
were then calculated numerically. As the device could not be

immersed directly in ammonium hydroxide, vapor treatment

is used to deposit NH3 vapor molecules on the device. Here,

the device was left in a petri dish in an ammonium hydroxide

atmosphere for 2 h. Measurements were then repeated and

compared to those from the clean device [Figs. 4(b)–4(d)]. It

is possible to wash the device in acetone/isopropyl alcohol

FIG. 2. (Color online) Schematic diagram of a crossed Si NW/SiO2/Al NW

tunnel junction.

FIG. 1. (Color online) Schematic diagrams of (a) inelastic tunneling and

(b) IETS signals (The I–V characteristics, conductance G¼ dI/dV–V and

IETS peaks d2I/dV2–V) for a metal/insulator/metal tunnel junction device.

FIG. 3. (a) Magnified SEM image of Si NW/SiO2/Al NW tunnel junction and (b) SEM image of Si NW/SiO2/Al NW tunnel junction widths.
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and recover the original clean measurement. This is in con-

trast to early IETS measurements where molecules were

introduced during the tunnel junction fabrication.1–4

Figure 4(b) illustrates the I–V characteristics of the tunnel

junction before and after adsorption of NH4OH molecules.

Figure 4(c) displays the dI/dV–V characteristics, and Fig.

4(d) shows the d2I/dV2–V characteristics of the device. The

I–V characteristics [Fig. 4(b)] are diodelike, due to the pres-

ence of a Schottky barrier at the Si NW/SiO2 interface. As

we measure the data using a four-terminal measurement, this

implies that the Schottky barrier must lie along the current

path, i.e., at the interface and is not remote from the junction

elsewhere in the Si NW (Fig. 5). The device current reduces

slightly following NH4OH treatment. In the d2I/dV2–V char-

acteristics [Fig. 4(d)], peaks are observed at ��0.12 and

�0.25 V (upper arrows). These may be attributed to the first

and second excitation modes of an N–H bond at room

temperature.

The lower arrows at ��0.15 and �0.3 V indicate previ-

ously reported excitation modes of N–H bonds in a MIM Al/

Al2O3/Pb device at 4.2 K.21 The peaks in our data are shifted

slightly relative to previous data. However, the peaks’ sepa-

ration remains the same at ��0.15 V.

B. Acetic acid (CH3COOH)

The IETS characteristics of a tunnel junction with acetic

acid adsorption are shown in Fig. 6. Figures 6(a)–6(c)

shows the I–V, dI/dV–V, and d2I/dV2–V characteristics,

respectively, for both the clean device, and the device

with acetic acid adsorption. Acetic acid was adsorbed on

FIG. 4. (Color online) IET spectrum of NH4OH on a Si NW/SiO2/Al NW tunnel junction at 300 K (1000 measurement points, rectangles and circles used as

marker to indicate different curves): (a) four-terminal measurement circuit, (b) the I–V characteristics of the tunnel junction before and after adsorption of

NH4OH molecules, (c) the dI/dV–V characteristics, and (d) the d2I/dV2–V characteristics of the device.

FIG. 5. (Color online) (a) Inelastic tunneling forward bias, (b) inelastic tun-

neling reverse bias, and (c) IETS signals (The I–V characteristics, conduct-

ance G¼ dI/dV–V and IETS peaks d2I/dV2–V) for semiconductor/insulator/

metal tunnel junction.
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the clean device by immersion at room temperature for

5 min.

In a manner similar to the measurements of Fig. 4(b), the

I–V characteristics are diodelike, both before and after

immersion, and the device current reduces following immer-

sion. The dI/dV–V characteristics of the device [Fig. 6(b)]

show a reduction in conductance, and nonlinearities that cor-

respond to the peaks in the d2I/dV2–V characteristics. In Fig.

6(c), the upper arrows indicate the measured peaks at

��0.25 and �0.75 V, which may be attributed to the first

and third excitation modes of a C–H bond at room tempera-

ture. The lower arrows illustrate the previously reported ex-

citation modes of C–H at ��0.36, �0.65, and �0.95 V in a

MIM device at 4.2 K.22 The peaks’ separation in our meas-

ured data is ��0.5 V, which corresponds well to the separa-

tion between the first and third excitation modes of C–H

bonds.

C. Propionic acid (C3H6O2)

The IETS characteristics of a tunnel junction with

C3H6O2 adsorption are shown in Fig. 7. Figures 7(a)–7(c)

shows the I–V, dI/dV–V, and d2I/dV2–V characteristics,

respectively, for both the clean device, and the device with

FIG. 6. (Color online) IET spectrum of CH3COOH on a Si NW/SiO2/Al NW

tunnel junction at 300 K: (a) The I–V characteristics, for both the clean de-

vice, and the device with acetic acid adsorption. (b) The dI/dV–V character-

istics, for both the clean device, and the device with acetic acid adsorption.

(c) The d2I/dV2–V characteristics, for both the clean device, and the device

with acetic acid adsorption. (Note: 1000 measurement points, rectangles and

circles used as marker to indicate different curves.)

FIG. 7. (Color online) IET spectrum of C3H6O2 on a Si NW/SiO2/Al NW

tunnel junction at 300 K: (a) The I–V characteristics, for both the clean de-

vice, and the device with propionic acid adsorption. (b) The dI/dV–V charac-

teristics, for both the clean device, and the device with propionic acid

adsorption. (c) The d2I/dV2–V characteristics, for both the clean device, and

the device with acetic propionic adsorption. (Note: 1000 measurement

points, rectangles and circles used as marker to indicate different curves.)
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propionic acid adsorption. Propionic acid was adsorbed on

the clean device by immersion at room temperature for 5

min.

In a manner similar to the measurements of Figs. 4(b) and

6(a), the I–V characteristics are diodelike, both before and

after immersion, and the device current reduces following

immersion. Figure 7(b), the dI/dV–V characteristics of the

device, show a reduction in conductance and nonlinearities,

which correspond to the peaks in the d2I/dV2–V characteris-

tics. In Fig. 7(c), the upper arrows illustrate measured peaks

at ��0.2, �0.5, and �0.85 V, which may be attributed to

the first, second, and third excitation modes of a C–H bond

at room temperature.

The lower arrows illustrate the previously reported excita-

tion modes of C–H at ��0.36, �0.65, and �0.95 V in a

MIM device at 4.2 K.22 The peaks’ separation in our meas-

ured data is ��0.3 V, which corresponds well to the separa-

tion between the first and second and also between the

second and third excitation modes of C–H bond.

IV. SUMMARY

IETS measurements are performed on Si NW/SiO2/Al

NW tunnel junctions at 300 K for NH4OH, CH3COOH, and

C3H6O2 molecules. The tunnel junction area is

�50� 120 nm and tunneling occurs across the 10 nm thick

SiO2 layer. The I–V, dI/dV–V, and d2I/dV2–V characteristics

of the tunnel junction are measured before and after the

adsorption of the NH4OH, CH3COOH, and C3H6O2 mole-

cules using vapor treatment or immersion. Peaks can be

observed in the d2I/dV2–V characteristics in all the cases fol-

lowing molecules adsorption. These peaks may be attributed

to the vibrational modes of N–H and C–H bonds. The peak

separations are similar to previous reported work on micro-

meter scale MIM tunnel junction at low temperature.
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