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Transmission-Line Model of Noisy
Electromagnetic Media

Richard R. A. Syms, Senior Member, IEEE, Oleksiy Sydoruk, and Laszlo Solymar

Abstract—A transmission-line model of thermal noise in 1-D
electromagnetic (EM) media is presented that can find both the
magnetic and the electric contributions to the noise in arbitrary
arrangements of isotropic material. The model is used to compute
the noise performance of a negative-index metamaterial slab based
on split-ring resonators and rods, when magnetic and electric
noise are both significant. It is shown that the former rises rapidly
in the range when negative index effects are obtained, due to the
lossy magnetic resonance. Results for infinite and finite media are
compared, and the effect of size is discussed. Results for the slab
are also compared with the indirect prediction of standard EM
theory, and shown to be identical.

Index Terms—Fluctuation-dissipation theorem, Johnson noise,
metamaterial, negative index, thermal noise.

I. INTRODUCTION

S INCE THE time of Johnson [1] and Nyquist [2], it has
been known that dissipative electrical elements give rise

to thermal noise, due to an inescapable linkage known as the
fluctuation dissipation (F-D) theorem [3], [4]. In the 1950s,
Rytov showed that thermal noise generates electromagnetic
(EM) waves in lossy media, and that this radiation is respon-
sible for the thermal emittance of a body. His original work was
published in Russian, but accessible accounts can be found in
a translation [5] and in several well-known textbooks [6]–[8].
Similar theories were also developed in the West [9], [10].
The essence of Rytov’s approach was to add randomly

varying source terms (often known as test sources) to the
Maxwell curl equations. The properties of the sources are
obtained from the F-D theorem. The sources excite noise
waves (essentially Green’s functions), and Rytov found the
thermal radiation by summing the waves, taking into account
their lack of correlation. Although very general, his method
has the limitation that the Green’s functions are only known
analytically for a few systems. Furthermore, he carried out
the summations in k-space rather than real space. While this
approach allows the identification of noise propagating near
a given frequency and direction, it complicates calculations
for finite or inhomogeneous media. Furthermore, such calcu-
lations tend to yield significantly different results to those of
infinite homogeneous media (which anyhow generate some
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Fig. 1. EM wave incident on a slab of lossy material.

well-known paradoxical conclusions, such as thermal noise in
apparently lossless media).
For physicists, most early interest lay in calculating the emis-

sion from extremely hot plasma [11]–[14]. Related problems
include the emission of astronomical objects and radiation from
nuclear detonations. Recourse was often made to approximate
methods, or to an indirect method based on Kirchhoff’s ra-
diation law (for a translation of the relevant paper, see [15]),
which replaces the problem of finding the emittance with that
of finding the absorbance. This method again has limitations; it
cannot find the noise inside a body, or separate it into electric
and magnetic components.
For electrical engineers, thermal noise is of course a sig-

nificant limiting factor for device performance [16]. However,
while some theories of noisy circuits involve the propagation
of noise waves [17]–[23], they appear to have been developed
entirely in isolation from the above. The most relevant recent
work on noise waves has been in photonic-bandgap structures,
and considerable interest has been taken in exploiting period-
icity to modify emittance [24]–[32].
By their nature, the artificial media known as metamaterials

occupy an intermediate position between electrical circuits and
periodically structured media. For example, although they may
be described in terms of effective medium parameters, they are
realized using arrangements of discrete “meta atoms,” whose
response is manipulated to obtain novel properties such as
negative permittivity and permeability [33], [34]. Often, their
behavior is modeled using equivalent circuits [35]–[40]. Since
most metamaterials involve lossy conductors, the question
of their thermal performance is important for a wide variety
of practical applications. For example, we would expect the
signal-to-noise ratio (SNR) of a wave passing through a lossy
negative-index slab (Fig. 1) to deteriorate due to the additive
effect of thermal noise.
We would also expect to be able to control the spectral

variation of emittance to some extent, for example, to alter
the radiation in a given band and hence realize novel thermal
sources. However, effective methods of calculating noise are
needed to assess the likely effects. In the past, the overwhelming
emphasis has been on electrically generated noise. However,
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Fig. 2. Transmission-line model of a finite 1-D noisy EM slab.

because metamaterials require magnetic effects to generate si-
multaneously negative values of permittivity and permeability,
magnetically generated noise also requires investigation.
Clearly, EM noise cannot be separated experimentally into

electrically and magnetically generated components. However,
knowledge of the origins of the dominant noise contribution will
allow engineers to develop low-noise designs. Particularly, the
poor performance of the magnetic resonators currently used in
metamaterials may be identified.
Previously, we have considered the propagation of noise

waves in purely magnetic metamaterials [41], [42]. Here,
we demonstrate a general transmission-line model for 1-D
systems, capable of performing both direct and indirect calcu-
lations, and demonstrate its use in a double negative material.
The idea of modeling EM media in terms of transmission
lines containing lumped-element components that describe
the material properties is long established. Here we take the
equivalence one step further, and use the current and voltage
sources that represent the noise in the components to model the
noise due to the medium. In doing so, we arrive at a discrete
approximation to the Rytov model. The model is introduced in
Section II. Analytic predictions for infinite media are presented
in Section III and numerical calculations for finite media in
Section IV. Since it is important to provide an independent
verification, the numerical results are confirmed using rigorous
solution of Maxwell’s equations in Section V. Conclusions are
drawn in Section VI.

II. 1-D TRANSMISSION-LINE MODEL

We base the analysis on a 1-D transmission-line description
of EM wave propagation. To construct the model, 1-D space is
first discretized into sections. Generally, sections (whose
equivalent circuit parameters describe local properties) will be
required for the material, together with two additional sections
for free space outside, so that . Fig. 2 shows an
example where three central sections correspond to the medium,
while the first and last represent free space. For a general slab
of thickness , , where is the period.
Within the medium, the series impedance in the th element

is a complex inductance ,
where and are, by definition, the real and imaginary
parts of the inductance and and are the real and imagi-
nary parts of the complex permeability . The corresponding
impedance is defined as at angular fre-
quency , where is a frequency-dependent series resis-
tance. Similarly, the shunt impedance is a capacitance

, where is the complex permittivity. Any

nonzero value of will then introduce a parallel conductance
. Note that both the inductance and capacitance may vary

from element to element.
According to Nyquist [2], the resistances and conduc-

tances will inject thermal noise. Each series element therefore
has an associated voltage source , describing magnetic
noise, whose root mean square (rms) value in a frequency
interval is obtained from the fluctuation-dissipation the-
orem. At low frequency, we may use the approximation

. Here, is the Boltzmann’s
constant and is absolute temperature, assumed the same
everywhere so the system is in thermal equilibrium. At higher
frequency, the full quantum expression derived from the F-D
theorem [3] may be used. Similarly, the shunt impedance has
an associated current source , describing electric noise,
whose corresponding rms value is specified at low frequency
by . These sources are similarly
uncorrelated, and there is no correlation between magnetic
and electric noise. In general, the correlation properties of the
sources may therefore be summarized as [5]

(1)

Here, denotes the complex conjugate and is the Kro-
necker delta. The general task is to find the system response with
all sources present. Within the medium, the transmission-line
equations are

(2)

These equations are clearly analogous to the time-independent
Maxwell curl equations, with and representing the
electric and magnetic fields, respectively, and and
representing Rytov’s sources. For slow variations, we would
therefore expect the quantity to describe the
local impedance. If we then write and ,
where the subscripts and indicate free space and relative
quantities, respectively, we would also expect the quantity

to describe the local refractive index.
The line is terminated at each end with a real impedance

, to represent free space. For these elements,
the equations are different, and given by

(3)

Here, terms are noise sources associated with free space,
whose rms value is specified by .
The equations can be written in matrix form as .

Here, is an matrix, is a -element column
vector containing the nodal voltages and line currents, is a

-element column vector containing the noise voltages and
currents, and . Equation (4) shows the corre-
sponding matrix representation. The matrix is clearly tridi-
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agonal, and its diagonal elements consist of local admittances,
shown in (4), at the bottom of this page.
The unknowns can be found for any input as .

Solution of simultaneous equations in this way clearly in-
volves inversion of an matrix, which becomes in-
creasingly time consuming as rises. However, some prob-
lems—for example, those involving slabs—may contain uni-
form sections of significant length. Within these regions, the
noise wave solutions can only take the form of standing waves,
whose description requires only two current wave amplitude co-
efficients. If these regions may be identified, it should be pos-
sible to reduce the number of equations that must be solved,
effectively trading a reduction in execution time for an increase
in algorithm complexity.
Since the sources are not correlated, the local noise due to

the material may be found directly by evaluating for each
source in the line in turn and performing an incoherent addition
of the results. This process is equivalent to the spatial summa-
tion of a set of numerically calculated Green’s functions, which
are unique to the arrangement considered. For example, if the
current in element due to a magnetic noise source in
element is and the corresponding current due to an
electric noise source in element is , the local noise
power is , where

(5)

Here, the summations are taken over all source positions .
The powers , , and can be written in

terms of spectral densities , , and , such that
, and so on. Calculation of the spectral density

in, say, the right-hand load, then allows direct calculation of
the emittance (the ratio of the thermal power emitted to the
power emitted by a black body at the same temperature ) as

(6)

This quantity may also be subdivided into magnetically and
electrically driven contributions and . Other quantities
may be found by evaluating when the noise arises instead

from, say, the left-hand free-space impedance. In this case, the
reflection coefficient and transmission coefficients are

(7)

The reflectance and transmittance are then and
, respectively. Assuming that the input signal power is ,

and the input source noise power in a bandwidth is
, the input SNR is . After passing through the

slab, both and will be modified by the transmittance
. However, will also be augmented by the noise due to
the medium . Thus, the output signal power is

, while the output noise power is
. The output SNR is therefore , and the noise factor
—the input SNR divided by the output SNR—can be obtained

as

(8)

The noise figure (NF) is then .
By comparison, the indirect method uses Kirchhoff’s law of

thermodynamic equilibrium to argue for the equivalence be-
tween the emittance and the absorbance , leading to the al-
ternative expression for the noise factor

(9)

The absorbance can of course be found from the transmittance
and reflectance as . This approach allows the
noise properties of a body to be found by probing it externally.
However, it clearly cannot separate the emittance into magnet-
ically and electrically generated parts.

III. INFINITE HOMOGENEOUS MEDIA

Before proceeding to specific examples, we consider the case
of infinite homogeneous media, for which we can ignore the
terminations and write and for all in (1) and
(2). The problem can then be solved in terms of known Green’s
functions.

(4)
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We first note that, in the absence of sources, (2) may
be uncoupled. Assumption of the traveling-wave solutions

or , where
is the complex propagation constant, then yields

the standard dispersion relation

(10)

When is small (generally the case), we obtain the standard
result . If we then write and , this
approximation leads directly to the interpretation of
as the refractive index , as assumed before. However, since
it may be complex, we write and choose the
sign of the square root to give decaying rather than growing
waves. Similarly, the characteristic impedance is the constant

where the sign of the square root is chosen to
give a positive real part.
We now consider the effect of the source terms. Initially, we

consider the magnetic noise excited by the presence of single
voltage source in element , as shown in Fig. 3(a).
For this case, (2) may be solved by assuming that the source

excites a symmetric pattern of current waves propagating away
in either direction, namely,

(11)

This solution is the Green’s function for magnetically ex-
cited noise waves in an infinite homogeneous medium,
written in terms of currents. Substitution of (11) into (2), and
making use of (10) allows the amplitude to be found.
Using the approximation of small once again, we obtain

. Since we may write this result as
, it has a simple interpretation: it is the current

we would expect to launch into two semi-infinite 1-D media
arranged in parallel. Accompanying the current waves are
voltage waves. At the same level of approximation, it is simple
to show that their pattern is antisymmetric and given by

for

for (12)

Since the sources are uncorrelated, the Green’s functions must
be so as well. To allow their incoherent addition, we will gen-
erally be interested terms of the form , which, in this
case, may clearly be written as

(13)

Since the noise sources are all identical, the current in
element due to a source in a different element can then be
written down straightaway as the shifted solution

(14)

Fig. 3(b) shows example variations for representative noise
sources. The patterns decay exponentially on either side of
the excitation. At each point, their effects must be summed,

Fig. 3. (a) Infinite homogeneous medium with magnetic noise source in ele-
ment . (b) Current distributions from representative noise sources.

but for infinite homogeneous media, the result must be in-
dependent of position. We therefore need only consider one
observation point, say, element . Since the current
in this element due to a source in element must satisfy

, the total effect due
to all the magnetic noise sources is the incoherent sum

(15)

Assuming is small, this sum can be evaluated analytically,
to get . The corresponding power (the
same everywhere) is then . With some
simple manipulation, we then obtain for the spectral density of
magnetically excited noise

(16)

The analysis above may be repeated for electric noise, starting
by assuming a current source in element . The main steps
are similar; however, this time the Green’s function

for voltage waves is symmetric, and the as-
sociated current pattern is antisymmetric. The resulting spectral
density of electrically excited noise is

(17)

Equations (16) and (17) clearly have similar form, and can be
obtained from each other by exchanging magnetic and electric
quantities. Since the two types of noise are also uncorrelated,
the total spectral density can again be written as .
We now briefly consider the paradox of noise in

low-loss media. If and , we can
make the approximations ,

, , and



18 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 1, JANUARY 2013

Fig. 4. Negative index medium based on SRRs and rods. (a) Physical realiza-
tion. (b) Circuit representation.

. In this case, we
obtain

(18)

Addition then leads to the result , corresponding to
for each of the two wave directions. This result still holds

when losses tend to , and implies that there must actually be
thermal noise in lossless media, a well-known and counter-in-
tuitive conclusion. However, the paradox is resolved by con-
sidering that the noise must be generated by a summation of
an infinite set of infinitely weak noise waves with contributions
arising from sources infinitely far from the point of observation.
Consequently, similar effects cannot arise in more realistic finite
media.

IV. NOISE IN NEGATIVE INDEX MEDIA

As an example, we consider the case of noise in negative
index media, a topic of current interest. In such media, magnetic
resonators such as split-ring resonators (SRRs) are used to con-
trol the effective relative magnetic permeability at RF and
microwave frequencies [33], [34]. Similarly, conducting rods
are used to control the dielectric permittivity . With careful
choice of parameters, and may each be made negative
over limited frequency ranges. In any range where both are si-
multaneously negative, the refractive index is
also negative, and many interesting phenomena such as nega-
tive refraction can arise.
SRRs consist of a nested pair of conducting loops with splits

located on opposite sides. In the 1-D case, the SRRs are arranged
perpendicular to the magnetic field of a traveling EM wave, as
shown in Fig. 4(a). In this geometry, the magnetic field can in-
duce voltages in the resonators. The resulting currents create ad-
ditional magnetic fields, which, when added to the original field,
give rise to the effect of nonunity relative permeability. Simi-
larly, the rods are conducting strips. These are arranged parallel
to the electric field, which may then drive currents up and down
the strips. The currents then give rise to additional electric fields,

which are in turn responsible for the effect of nonunity relative
permittivity. Thus, magnetic and dielectric effects may both be
achieved using conductors. However, the presence of loss in the
conductors makes such media particularly susceptible to noise.
Assuming that the SRRs are not coupled to their neighbors, a

detailed equivalent circuit valid for low frequency is as shown
in Fig. 4(b) [39]. Here, the EM wave is represented as a trans-
mission line with lossless series and parallel elements
and . SRR loading is represented using lossy L–C res-
onators with elements , , and , coupled via a mutual
inductance into the series branch. Rod loading is repre-
sented using inductances and resistances in the shunt
branch. Associated with and are noise sources
and . Their values follow from the F-D theorem, and sat-
isfy and
[2].
In this equivalent circuit, all the components and noise

sources have constant values, but the circuit is relatively com-
plex. However, it is straightforward to reduce it to the simpler
form shown in Fig. 2, where the permittivity and permeability
are now frequency dependent and given by

(19)

Here, is the resonant frequency of the
resonators, is their quality factor,

is the filling factor, and and
are the equivalent plasma frequency and colli-

sion damping frequency of the rods, respectively. Similarly, it is
possible to show that the noise sources are related to the imag-
inary parts of the permittivity and permeability, as previously
described.
Fig. 5 shows the frequency dependence of the effective

medium parameters for cm, , where
, corresponding to a resonant frequency of 480

MHz, , , , and .
Here, we focus on the frequency range for which negative
parameters are obtained.
The real part of [see Fig. 5(a)] is slowly varying, being

negative below the plasma frequency and positive above it,
and tending to unity at high frequency. The real part of [see
Fig. 5(b)] is much faster varying, being positive below the res-
onant frequency , negative just above it and again tending to
unity at high frequency. The real part of the index [see Fig. 5(c)]
has a more complicated variation. is approximately when
and are of opposite signs. When both are negative, is

negative, and when both are positive, has a conventional pos-
itive value. The imaginary part of the permittivity is gener-
ally small and slowly varying. However, because the magnetic
effects are derived from a resonance, has a large peak near
. Consequently, we would expect to be dominated bymag-

netic loss, and hence, that propagation loss would be high in ex-
actly the region where negative-index effects are obtained. In
this range, we would therefore expect poor noise performance.
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Fig. 5. Frequency variations of: (a) , (b) , and (c) for a negative index
medium. Solid lines: real part. Dashed lines: imaginary part.

Fig. 6 shows the frequency variations of the normalized
magnetic, electric, and total noise power spectral densities

, , and for an infinite medium under
different conditions. The parameters are generally as above.
However, in Fig. 6(a), we arbitrarily set and to to

mimic the effect of removing the rods. There is only magnetic
noise, and in the passbands where , and

in the stopband where . Similarly, in Fig. 6(b),
we restore the rods, but set to to mimic the effect of re-
moving the resonators. There is now only electric noise, and

when , and when . In
Fig. 6(c), we allow rods and resonators together so both types of
noise are present. This time, the total noise density is
in the propagating bands, when and have the same sign,
but when the signs differ. For these parameters, magnetic
noise dominates in the negative index band.
To highlight the difference between finite and infinite media,

Fig. 7 shows the frequency variations of , ,
and at the center of the slab, when resonators and rods
are both present.Fig. 7(a)–(c) shows results for
and , respectively (corresponding to and m).
For small , the spectra are very different to those of Fig. 6(c),
and the noise is generally lower in the low-loss spectral region
above . As rises, the results gradually approach those
for infinite media, but become increasingly oscillatory. These
effects arise from a combination of the absence of some of
the long-range noise sources that contribute to the uniform
noise density in an infinite medium, and Fabry–Perot effects
in the slab. Note that the convergence is extremely slow,
highlighting the unrealistic nature of the results for infinite
media.

Fig. 6. Frequency variation of the normalized noise PSD in an infinite
medium based on: (a) resonators only, (b) rods only, and (c) resonators and rods
together. Dashed lines: magnetic noise. Dotted: electric noise. Solid: total.

Fig. 7. Frequency variation of the normalized noise PSD at the center
of a finite slab based on resonators and rods for: (a) 100, (b) 500, and (c) 2500
elements. Dashed lines: magnetic noise. Dotted: electric noise. Solid: total.
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Fig. 8. Frequency variation of the emittance of a finite slab based on res-
onators and rods for: (a) 100, (b) 500, and (c) 2500 elements. Dashed lines:
magnetic noise. Dotted: electric noise. Solid: total.

Fig. 8 shows the corresponding data for the emittance. Once
again, the results gradually evolve as rises so that the emit-
tances of thick and thin slabs are quantitatively different. How-
ever, once the slab is thick enough, the emittance becomes ef-
fectively constant and the slab may be considered infinite for all
practical purposes.
Fig. 9 shows the corresponding variations of the transmit-

tance, reflectance, and emittance, all plotted together. Again,
we see differences as the slab thickness changes. However, once
the slab is thick enough, its reflectance also effectively becomes
constant, while its transmittance tends to .
The behavior above implies poor noise performance for thick

slabs. Fig. 10 shows the corresponding frequency variation
of the NF. For small thickness, the NF rises rapidly as
becomes increasingly negative, reaching a peak at . Since the
frequency range in which is negative approaches this value,
the operating frequencies of negative index media based on
magnetic resonators should be chosen with care. As the thick-
ness rises, usable NFs are obtained only at high frequency, i.e.,
completely outside the negative index band. As has previously
been noted [41], [42], amplification may be used to restore
the signal, but will be unable to improve the NF significantly.
High- -factor SRRs are therefore imperative.

V. VERIFICATION USING MAXWELL’S EQUATIONS

For some simple arrangements, the results may be compared
with the prediction of standard EM theory. All that is required is

Fig. 9. Frequency variation of the transmittance (dashed lines), reflectance
(dotted), and emittance (solid) of a finite slab based on resonators and rods

for: (a) 100, (b) 500, and (c) 2500 elements.

Fig. 10. Frequency variation of the NF of a finite slab based on resonators and
rods for: (a) 100, (b) 500, and (c) 2500 elements.

a method of finding the transmittance and the reflectance. If one
is available, the absorbance can be extracted and Kirchhoff’s
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law invoked to find the emittance. For example, for a uniform
slab, the transmission and reflection coefficients are

(20)

Here, is the propagation constant of free
space and and are the transmission and reflection coeffi-
cients at the interface between media and given by

(21)

The transmittance and reflectance may then be found as
and . Using this approach, exactly the same re-

sults as Figs. 9 and 10 were obtained, confirming the essential
validity of the transmission-line model. However, the indirect
method clearly cannot make any predictions for infinite media,
find the noise inside a body, separate the magnetic and electric
contributions, or perform calculations for general geometries.
Some differences were seen when the same slab thickness

was modeled using smaller numbers of elements with larger
values of the period . These departures are due to increasing
granularity in the numerical model, which then provides a less
effective representation of a continuous medium. Clearly, an
appropriate subdivision of the calculation space is required to
achieve accurate results.

VI. CONCLUSIONS

We have demonstrated a simple 1-D transmission-line calcu-
lator for EM noise. The method allows both the magnetic and
electric contributions to the emittance and noise factor to be
found, together with transmittance and reflectance, and should
therefore be useful in general noise calculations. The significant
difference between the “classical” result for the power spectral
density of noise in infinite media and the more realistic result
obtained in finite slabs has been highlighted.
The model is clearly based on low-frequency assumptions

and has restricted dimension. The use of a circuit analog is no
disadvantage since it should simplify the addition of sources and
detectors, and hence, allow the simulation of complete commu-
nication or sensing systems. A 1-D model should be adequate
for many problems involving slabs, shells, and multilayers, and
extension of the method to describe other media and include ad-
ditional dimensions appears possible.
For example, simulation of signal propagation in 2-D and 3-D

metamaterials has already been carried out [37], [38]. The de-
velopment of analogous methods for modeling the propagation
of noise in higher dimensions would, in principle, be straightfor-
ward. However, there are a number of practical difficulties. The
first is to achieve sufficiently rapid calculation. For example, a

2-D calculation windowwith elements would require in-
version of an matrix, and computation of the effects
of noise sources. This poor size scaling might render the
approach impractical for three dimensions. The second is to de-
fine absorbing boundary elements that operate effectively over
a wide range of incidence angles. The third is to decompose
the resulting radiation field into an angular spectrum of plane
waves. These aspects are currently being considered.
The particular case of negative index media based on SRRs

and rods, when magnetic effects are significant, has been exam-
ined. The results show that the NF increases rapidly in the range
where the index is negative, due primarily to magnetic noise
from lossy resonators used to generate a negative permeability.
This conclusion represents a characteristic difference between
conventional and artificial materials. Although resonance also
occurs in conventional media, due to electronic or molecular
absorption, high performance may easily be obtained because
the quality factor is typically much higher and the operating fre-
quency may be well separated from the resonance.
Experimental confirmation of the theoretical predictions

could be carried out in a rectangular waveguide, by comparing
the power spectral density of the noise due to a source such
a noise diode, with and without loading by SRRs and rods
between the source and receiver. However, high frequencies
would be required to achieve a compact waveguide arrange-
ment.
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