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1 Introduction

The Weak Measurement idea was first introduced by Y.Aharonov et al

in 1988[2]. It was used to show how post selection could dramatically

change the outcome of a measurement of an operator . For example, when

measuring the spin of a spin 1/2 particle in the ẑ direction, if only the

measurement outcomes of the states, which are post selected to have spin

+1/2 in the x̂ direction are considered, then it is possible for the average

outcome of the measurements of the ẑ component of the spin to be far

greater than 1/2.

A Weak Measurement is not a single measurement but in fact a series

of measurements on a pre selected quantum state. Each measurement is

“weak” due to a large uncertainty in the measuring device. Due to the

uncertainty, the outcome of the measurement cannot be resolved in one

measurement and hence a large number of measurements are carried out

on separate copies of the pre selected quantum state in order to accurately

determine the measurement outcome. However, only the measurement

outcomes of the post selected states are used to calculate the average

value of the measurement outcomes.

In this report, I will review Weak measurements particularly focussing

on how one must interpret the results correctly. To this aim, I shall discuss

its strange results and how they might be due to a misinterpretation.

Finally I shall investigate the weak value of Gaussian quantum states using
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ERL mechanics. Despite this result being limited to Gaussian quantum

states, it aims to offer a more intuitive interpretation of the results of weak

measurements.
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2 Weak Measurements

In this chapter, I shall introduce the general Weak Measurement protocol.

This will lead us to the definition of the Weak value of an operator 〈Â〉W ,

which is effectively the measured quantity in a Weak Measurement.

2.1 The Weak Measurement Protocol

In order to perform the Weak Measurement, we need to start with a large

ensemble of particles, all prepared in the same initial state |Ψi〉. Each

particle will interact with a separate measuring device, which is in the

state

|Φ(q)〉 =

∫
1

√
∆(2π)

1
4

e−
q2

4∆2 |q〉 dq, (2.1)

where ∆ is the standard deviation of the position of the device. In mo-

mentum space, this is a Gaussian with mean 0 with a standard deviation

of 1
2∆ .

The interaction Hamiltonian is

H = χ(t)p̂⊗ Â, (2.2)

where p̂ is the momentum operator and Â is the operator for quantity, we

aim to measure.

There are two ways in which, a measurement can be made weak. The
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more obvious way is by having an impulsive measurement at time t0

χ(t) = χδ(t− t0), (2.3)

in the limit of χ being small. However the more interesting way of making

a weak measurement (which is the method used in the original paper [2])

is by requiring the initial momentum of the device to be ≈ 0. In order to

ensure that the momentum is small, the uncertainty in the momentum has

to be very small as well. Due to the Uncertainty Principle, this requires

the uncertainty in position to be large. Hereafter, I shall use to the second

condition as the limit of a Weak Measurement. In order to emphasise

that the ”weakness” of the measurement is not due to a weak coupling

constant, let ∫ t0

0
χ(t) dt = 1. (2.4)

The particle and the device evolve under the interaction Hamiltonian

into the following entangled state (Note that hereafter, we use units in

which h̄ = 1)

e−ip̂⊗Â|Φ(q)〉 ⊗ |Ψi〉 = (
∑
j

|aj〉e−ip̂aj 〈aj |)|Φ(q)〉|Ψi〉

=
∑
j

αj |Φ(q − aj)〉|aj〉
(2.5)

where |aj〉 is the eigenvector of Â with eigenvalue aj and

|Ψi〉 = αj |aj〉. (2.6)
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(In the first step, the following result was used:

eM = UeDU †, (2.7)

where

M = UDU † (2.8)

and U is a Unitary matrix.) Hence, we can determine Â of the particle by

measuring the shift in position of the device. However if

∆� aj∀j, (2.9)

in other words, if the uncertainty in the device is much larger than the

amount it is shifted by, then it is impossible to determine Â of the particle

from a single measurement. Instead, the average value 〈Â〉 of the ensemble

of particles can be determined by repeating this measurement on each

individual particle prepared in the same initial state. After interacting

with the particle, the probability of a position measurement of the device

being q is

P (q) =
∑
j

|αj |2
1

√
∆(2π)

1
2

e−
(q−aj)2

3∆2 (2.10)

and since ∆ is large,

P (q) ≈
∑
j

|αj |2
1

√
∆(2π)

1
2

(1− (q − aj)2

3∆2
)

=
∑
j

1
√

∆(2π)
1
2

(1− (q − |αj |2aj)2

3∆2
)

≈
∑
j

1
√

∆(2π)
1
2

e−
(q−|αj |

2aj)2

3∆2

=
∑
j

1
√

∆(2π)
1
2

e−
(q−〈Â〉)2

3∆2

(2.11)
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Thus the probability distribution of the position of the device is a gaus-

sian centred around 〈Â〉. Since for an ensemble of N such particles, the

uncertainty in the average is reduced by 1√
N

, the average value 〈Â〉 of the

system may be determined with arbitrary accuracy.

The reason this measurement procedure is termed ”Weak” is because

the quantum state of each particle does not change much as a result of

the measurements. This is because after the measurement the state of the

system is

|Ψ〉 =
1

R

∑
j

αj
1

√
∆(2π)

1
4

e−
(q0−aj)2

4∆2 |aj〉, (2.12)

where R is a normalisation constant and q0 is the measurement outcome

of the position of the device. And in the limit of ∆ being very large, |Ψ〉

approaches |Ψi〉. Hence, the “weakness” of the measurement is due to the

lack of information extracted from the particle.

2.2 The Weak Value

The Weak Measurement protocol has nothing strange or paradoxical about

it. However when post selection is added to the weak measurement pro-

tocol, it yields some interesting results. These results will be discussed in

Chapter3. In this section, I will describe how adding post selection to the

protocol affects the measurement outcome, define the weak value and the

limits under which the calculations are valid.

We now choose a state |b〉 such that

B̂|b〉 = b|b〉, (2.13)

for some operator B̂ that does not commute with Â, to be the post selected

state. We perform a strong measurement on the particle( using a separate
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measuring device), after it has interacted with the weak measuring device

, to collapse the particle into one of B̂′s eigenstates. Only the particles

that collapse into the |b〉 state are then used to calculate the average value

of Â. Hence only the post selected subset of the particles from the original

ensemble are used to calculate the average value of Â.

After post selection the state of the particle and device is

|Ω〉 =
1

K
|b〉〈b|e−ip̂Â|Φ(q)〉‖Ψi〉

≈ 1

K
|b〉〈b|(1− ip̂Â)|Φ(q)〉‖Ψi〉

=
1

K
|b〉〈b|Ψi〉(1− ip̂

〈b|Â|Ψi〉
〈b|Ψi〉

)|Φ(q)〉

≈ 1

K
〈b|Ψi〉|b〉e

−ip̂ 〈b|Â|Ψi〉〈b|Ψi〉 |Φ(q)〉,

(2.14)

where K is the normalisation constant. Here, I would like to point out that

K 6= |〈b|Ψi〉| if 〈Â〉W is complex. This is because, in that case e
−ip̂ 〈b|ÂΨi〉

〈b|Ψi〉

is not unitary anymore and hence does not preserve the inner product.

This fact is not immediately clear in most of the literature on this topic

as in most cases, the normalisation constant is completely ignored and

calculations are done on the unnormalised state of the device. However, I

shall address this point in more depth in the next Chapter.

So, now the device measures a quantity called the Weak Value of Â

〈Â〉W =
〈b|Â|Ψi〉
〈b|Ψi〉

(2.15)

Now we need to look carefully at the limits under which the approxi-

mations made in (2.14) are valid. The approximation made in going from

step 1 to step 2 is only valid if

|pn〈b|Ân|Ψi〉| � |〈b|Ψi〉| (2.16)
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and

|pn〈b|Ân|Ψi〉| � |〈b|Â|Ψi〉| (2.17)

for n ≥ 2.

The approximation in going from step 4 to step 5 requires

|p〈Â〉W | � 1. (2.18)

This makes condition (2.22) stronger than condition (2.16). Since p’s

spread around 0 is determined by ∆ , equation (2.23) implies

∆� |〈Â〉W
2
| (2.19)

and condition (2.22) implies

∆� max
n=2,3,4...

|1
2

(
〈Â〉W
〈b|Ân|Ψi〉

)
1

1−n | (2.20)

Note that the limits defined in the original weak measurement paper are

incorrect [11].

We can now see that adding post selection to weak measurement, changes

the value the probability distribution of the device shifts by from 〈Â〉 to

〈Â〉W .

In the previous chapter, we had restricted the coupling constant to obey

(2.4) in order to show an alternative method of making a measurement

weak. However having a small coupling constant and solving to only in-

clude O(χ) terms will yield exactly the same results as having p ∼ 0. One
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can see this from (2.14) :

|Ω〉 =
1

K
|b〉〈b|e−iχp̂Â|Φ(q)〉‖Ψi〉

≈ 1

K
|b〉〈b|(1− iχp̂Â)|Φ(q)〉‖Ψi〉

=
1

K
|b〉〈b|Ψi〉(1− iχp̂

〈b|Â|Ψi〉
〈b|Ψi〉

)|Φ(q)〉

≈ 1

K
〈b|Ψi〉|b〉e

−iχp̂ 〈b|Â|Ψi〉〈b|Ψi〉 |Φ(q)〉.

(2.21)

The approximation made in going from step 1 to step 2 is only valid if

|χpn〈b|Ân|Ψi〉| � |〈b|Â|Ψi〉| (2.22)

for n ≥ 2.

The approximation in going from step 4 to step 5 requires

|χp〈Â〉W | � 1. (2.23)

So after a weak measurement the state of the measuring device is |Φ(q −

χ〈Â〉W )〉. When doing calculations, it is a matter of choice/ convenience

as to which approximation is chosen to ensure weakness.
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3 The Strange Weak Value

3.1 Complex values

In the previous chapter, I claimed that when the post selection process

is incorporated into the weak measurement procedure, the measurement

outcome of the device is the weak value. However, from (2.14), it is not

immediately apparent, the effect of the weak value on the measuring de-

vice. Naively one might think that the Gaussian of the position of the

measuring device is shifted by the weak value. This is, however not always

the case. From the definition of the weak value

〈Â〉W =
〈ΨPS |Â|Ψi〉
〈ΨPS |Ψi〉

(3.1)

one can see that despite Â being hermitian, the weak value may be com-

plex depending on the choice of the post selected state |ΨPS〉. In cases

where the weak value has an imaginary part, e
−ip̂ 〈b|ÂΨi〉

〈b|Ψi〉 is no longer uni-

tary. So how does a complex weak value affect the state of the measuring

device?

Theorem:[13] Let 〈Â〉 = a + ic. After a weak measurement, the mean

position of the measuring device of mass m is

〈q̂〉f = 〈q̂〉i + χa+ χcm
dV arq
dt

∣∣
t=t0

(3.2)
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and the mean momentum of the device is

〈p̂〉f = 〈p̂〉i + 2χcV arp, (3.3)

where

V arq = 〈Φ|q2|Φ〉 − 〈Φ|q|Φ〉2, (3.4)

V arp = 〈Φ|p2|Φ〉 − 〈Φ|p|Φ〉2 (3.5)

and t0 is the time of the impulsive measurement interaction.

To work through the proof, it is convenient to assume the first limit of

the weak measurement, where χ is small. Having said that the results are

equivalent to if the weakness was achieved by restricting the momentum

of the measuring device by condition (2.19),(2.20).

In order to derive (3.2), start by substituting

p̂ = −i ∂
∂q

(3.6)

into the equation for the unnormalised final state of the device

|α〉 = 〈ΨPS |Ψi〉e−iχ〈Â〉W p̂|Φ〉 (3.7)

and multiplying it by its complex conjugate

α(q)∗α(q) = [(1− χ(a− ic) ∂
∂q

)Φ∗][(1− χ(a+ ic)
∂

∂q
)Φ]

= Φ∗Φ− χa(Φ∗′Φ + Φ∗Φ′)− iχc(Φ∗′Φ − Φ∗Φ′)

(3.8)

where Φ′ is the derivative with respect to q. Note that only O(χ) terms

have been retained.
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Since Φ(q) might be complex we rewrite it as

Φ(q) = ReiS (3.9)

.

Using

Φ∗′Φ + Φ∗Φ′ =
∂Φ∗Φ)

∂q
(3.10)

and

Φ∗′Φ− Φ∗Φ′ = Re−iS
∂(ReiS)

∂q
−ReiS ∂(Re−iS)

∂q

= 2iR2∂S

∂q
,

(3.11)

we have

α∗α = ρ− χaρ′ + 2χcρS′, (3.12)

where ρ = R2.

Since, |α〉 is unnormalised, the expression for 〈q̂f 〉 is

〈q̂〉f =

∫
α∗qαdq∫
α∗αdq

= 〈q̂〉f + χa− χc
∫

(q − 〈q̂〉f )2(ρS′)′.

(3.13)

Substituting (3.9) into the time dependent Shrödinger equation at the

time of the measurement impulse t0

i
∂Φ

∂t
= − 1

2m
Φ” + V (q)Φ (3.14)
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and solving the imaginary part yields

(ρS′)′ = −m∂ρ

∂t

∣∣
t=t0

. (3.15)

Putting this pack into (3.13) and solving the integral gives

〈q̂〉f = 〈q̂〉i + χa+ χcm
dV arq
dt

∣∣
t=t0

. (3.16)

We can now see how the weak value affects the position gaussian of the

device. It depends not only on whether the weak value has an imaginary

part or not but also on the initial position gaussian of the device. If the

device’s initial state is real valued (S = 0), then the integral in (3.13) with

coefficient c, i.e the imaginary part of the weak value, disappears. Hence

the expectation value of the position is only shifted by the real part of the

weal value.

In order to prove the change in the device’s momentum, we shall work

in the Heisenberg picture. Again, because |α〉 is unnormalised, the expec-

tation value for the momentum of the device after post selection is

〈p̂〉 =
〈α|p̂|α〉
〈α|α〉

=
〈α|p̂|α〉 − iχ〈Â〉W 〈Φ|p̂2|Φ〉+ iχ〈Â〉∗W 〈Φ|p̂2|Φ〉
〈Φ|Φ〉 − iχ〈Â〉W 〈Φ|p̂|Φ〉+ iχ〈Â〉∗W 〈Φ|p̂|Φ〉

= 〈p̂〉i + 2χcV arp

(3.17)

3.2 Great Expectations

At first glance, the weak value looks like a conditional expectation value as

it is essentially the expectation value of a subset of the ensemble. However,
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this interpretation of the weak value runs into a big problem. In some

cases, the weak value of an operator can be far greater than any of its

eigenvalues. As the first paper of weak measurement highlighted in its

title, the weak value of the spin of a spin 1
2 can even be 100. In this

section, I will discuss this particular claim, known as the AAV effect.

From the definition of 〈Â〉W , one can see that it is not bounded by

the Â’s eigenvalues. In fact the weak value can be made arbitrarily large

as 〈ΦPS |Φi〉 approaches 0. Now consider what happens to the device

after it weakly interacts with a particle under the interaction hamiltonian.

The wavegunction of each device is shifted by an eigenvalue of Â. The

distribution of all the devices combined is a superposition of wavefunctions

of each device. It therefore seems counterintuitive that for a post selected

ensemble such a superposition of shifts can result in an overall shift that

is much larger than the individual shifts. To understand this phenomenon

better, let us work through the example used in the original paper [2],[11].

A beam of spin 1
2 particles move in the ŷ direction with their spins lying

in the x̂− ẑ plane at an angle θ to the ŷ axis. The spin state of the particles

is

|Ψi〉 =
1√
2

[(cos
θ

2
+ sin

θ

2
)|0〉+ (cos

θ

2
− sin

θ

2
)|1〉, (3.18)

where |0〉 and |1〉 are the eigenstates of ẑ-component spin operator σz with

eigenvalues +1 and -1 respectively.

The particles’ velocities are well defined. The spatial wavefunction of

the particles in the ẑ direction is a Gaussian with standard deviation 1
2∆ .

Therefore the momentum with which the beam is spreading in the ẑ di-

rection is ∆. The wavefunction of the beam in momentum space is

|Φ〉 =

∫
e−

p2z
4∆2 f(px, py)|p〉dp, (3.19)
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where the definition of the function f(px, py) is unimportant. The ẑ-

component of the spins of the particles are measured by passing the beam

through a Stern-Gerlach device. The interaction Hamiltonian for this is

H = −λχẑσ̂z, (3.20)

where ẑ measures the position of the particle along the ẑ axis and λ =

µ∂B∂z , in other words the particle’s magnetic moment multiplied by the

magnetic field gradient of the Stern-Gerlach device in the ẑ direction.

To relate this scenario to our general discussion of weak measurements

earlier; here, the the measuring “device” is the momentum wavefunction

of the particle itself and the quantity to be weakly measured is λ ˆsigmaz

of the particle. We enforce conditions (2.19) and (2.20) on ∆ to ensure

weakness and χ obeys (2.4).

The beam is then passed through a second Stern Gerlach device, which

strongly measures the x̂ component spin of the particle. This splits the

beam into two , one corresponding to +1 eigenstate of the σ̂x operator

and one to the -1 eigenstate. A screen is placed only in front of the beam

corresponding to the +1 eigenstate

|ΨPS〉 =
1√
2

(|0〉+ |1〉) (3.21)

The distribution of particle along the ẑ axis is used to determine the

momentum distribution along the ẑ axis which would have shifted by the

weak value of λσ̂z.

|Φ〉f =

∫
e−

(pz−〈λσ̂z〉W )2

4∆2 h(px, py)|p〉dp, (3.22)

where the definition of the function h(px, py) is unimportant.

15



The weak value of λσ̂z is

〈λσ̂z〉W =
〈ΨPS |λσ̂z|Ψi〉
〈ΨPS |Ψi〉

=
λ sin θ

2

cos θ2

= λ tan
θ

2
.

(3.23)

Therefore,

|Φ〉f =

∫
e−

(pz−tan θ2 )2

4∆2 h(px, py)|p〉dp. (3.24)

And since, tan θ2 is always real, this leads to a shift of tan θ
2 in the

mean of the ẑ component momentum of the particle. One can see that

as θ approaches π, this shift can become arbitrarily large. In this way, a

measurement of a spin 1
2 particle can turn out to be a 100 as claimed by [2].

This statement, however does not make any sense. Quantum mechanics

tells us that this cannot be true. The mean spin of a set spin1
2 particles

can never be a 100, regardless of how specifically the group of particles is

chosen. Hence either, we are seeing some new physics here or the above

claim is incorrect. We shall see in the next Chapter that this claim must

be taken with caution as it might be due to the misinterpretation of the

weak value. For now let us address a more immediate question of how a

superposition of small shifts can lead to a very large shift.

It is true that, a weighted superposition of gaussians, each shifted by

some small amount (eg: the eigenvalues of an operator) can never yield

a shift which is larger than the biggest shift in the superposition. This

seems obvious. However if the weights are not positive definite then this

is not always true [11]. When the weights are not all positive definite, the

individual gaussians cancel in a complicated way sometimes causing the

resultant gaussian to be shifted by a very large amount. This is exactly
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what happens in the case of the AAV effect.

In general, after a weak measurement of an operator Â, the state of the

device is (using initial state of device and Hamiltonian as defined in (3.20)

and (6.41) respectively)

|φ〉f =
1

K

∑
j

αjβ
∗
j

∫
e−

(p−aj)2

4∆2 |p〉dp, (3.25)

where |aj〉 are the eigenstates of Â and

|Ψi〉 =
∑
j

αj |aj〉 (3.26)

and

|ΨPS〉 =
∑
j

βj |aj〉. (3.27)

From (3.25), one can see that the weights of the individual Gaussians

are not necessarily positive definite. To see what happens specifically in

the case of the AAV effect as θ approaches π, let θ = π − 2ε where ε� 1.

In this limit equation (3.25) yields

φf (p) =
1

2K
[(1 + ε)e−

(p−λ)2

4∆2 − (1− ε)e−
(p+λ)2

4∆2 ] (3.28)

The combination of the two terms each peaked at p = ±λ leads to an

approximate gaussian peaked at p = λ
ε . So we can see that as ε approaches

0, the Gaussian peaks at an arbitrarily large value.This effect is normally

not encountered when calculating expectation values as the weights are

always positive definite.

There is however one constraint on how large the weak value can get.

As shown in the condition in(2.19), the weak value can never be greater

17



than the uncertainty ∆, as in this case, the approximations made in cal-

culating the weak value break down. Despite this fact, in the literature, it

is sometimes claimed that the weak value is greater than the uncertainty

∆ [1].
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4 What is the Weak Value?

In this Chapter, I shall offer a very simple explanation to what the weak

value is and how one should interpret its surprising features. But first I

shall start with how it is interpreted by the authors of the original paper.

4.1 Interpreting the Weak Value using the

Two-State Vector Formalism (TVSF)

The weak value is often given physical meaning using the Two-State Vec-

tor Formalism (TVSF). In the TVSF, two quantum states are used to de-

scribe a quantum system at any particular time. The advocates of TVSF

argue that an artificial arrow of time is inserted into Quantum theory,

that should not be there [7]. They argue that Quantum theory must be a

time symmetric theory as reflected by the time symmetry in Shrödinger’s

and Heisenberg’s equations. They believe that the time - asymmetry is

introduced into Quantum mechanics by the theory of measurement[6]. To

illustrate their point, I cite an example from [6]: Consider an ensemble of

spin 1
2 particles which are in the +1 eigenstate of σ̂x at time t. We are able

to predict that the probability of finding σ̂y = 1 immediately after time t

is a 1
2 . Hence we can say with certainty, that given a large enough ensem-

ble, exactly half the particles would be have σ̂y = 1. However we cannot

predict the probability of σ̂y = 1 before time t to also be 1
2 . The ensemble
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could have all been prepared in the state σ̂y = 1, or in the state σ̂y = −1.

Hence, if we do not know what the state prior to time t was, then we

cannot determine with certainty what proportion of the ensemble would

have been in σ̂y = 1 regardless of the size of the ensemble. The difference

here is that we do not assume the existence of a future state but we do

assume the existence of a past state. It is argued that our assumption that

the past exists and the future does not at a particular time t introduces

an artificial arrow of time into Quantum theory that is not intrinsic to

the theory. For a classical system, having an initial boundary condition

is equivalent to a final boundary condition as the same outcomes are pro-

duced by evolving the system forward in time from the initial boundary

condition or backwards in time from the final boundary conditions. How-

ever this is not true in Quantum mechanics and hence, it is argued that in

order to achieve a time symmetry one must impose both initial and final

conditions on a quantum system. The way to do this is by pre selecting

and post selecting the ensemble so that in the time interval between the

pre and post selection, the situation is symmetric with respect to time.

TVSF describes the time interval between two measurements by the pre

selected state evolving forward in time and the post selected state evolv-

ing backwards in time. TVSF says that at a particular time t between

the time of pre selection ti and post selection tf , a system ought to be

described by two wavefunctions |Ψ1〉 evolving forward in time and 〈Ψ2|

evolving backward in time.

|Ψ1〉 = e
−i

∫ t
ti
Hdτ |a〉 (4.1)

〈Ψ2| = 〈b|e−i
∫ tf
t Hdτ (4.2)
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where |a〉 and |b〉 are the pre and post selected states respectively. In this

framework, the weak value of an operator Ô is considered the expectation

value of Ô for the given initial and final conditions i.e for the given pre

and post selected ensemble in the weak measurement limit.

For a device in the state

|Φ(q)〉 =

∫
1

√
∆(2π)

1
4

e−
q2

4∆2 |q〉 dq, (4.3)

assuming the free Hamiltonian is 0 and the interaction Hamiltonian is

H = χ(t)p̂Ô, (4.4)

where χ(t) obeys (2.4); it’s interaction with a particle in the state 〈ΨPS ||Ψi〉

shifts its position distribution by the weak value.

|Φ(q)′〉 ≈ 1

K
〈ΨPS |Ψi〉e

−ip̂ 〈ΨPS |Ô|Ψi〉〈ΨPS |Ψi〉 |Φ(q)〉

≈
∫

1
√

∆(2π)
1
4

e−
(q−Re(〈Â〉)2

4∆2 |q〉 dq.
(4.5)

(Note here for simplicity, it is assumed the change due to the imaginary

part of the weak value to be small)

I propose a simple way of checking this interpretation of the weak value.

If one does not assume that the free Hamiltonian acting on the particle is

0 but rather small compared to the interaction Hamiltonian, then if post

selection is carried out after a sufficiently long time such that e−i
∫ tf
t Hfreedτ

is not trivial; then the evolution of 〈ΨPS | should also be non-trivial. In

this case, the shift in the position distribution of the measuring device

would no longer be 〈ΨPS |Â|Ψi〉.
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If

〈ΨPS |e−i
∫ tf
t Hfreedτ = 〈Ψ′| (4.6)

then the device is shifted by the weak value 〈Ψ′|Â|Ψi〉. However, if we

assume the the free Hamiltonian acting on the device is approximately 0,

then, the state of the device does not evolve significantly in time. Hence,

its probability distribution should remain unchanged regardless of the post

selection time. This implies that the shift in its probability distribution

does not depend on the time of post selection. This is a contradiction.

It would therefore be easy to check the validity of this interpretation by

seeing if the altering the length of time between the weak measurement

and post selection would change the weak value.

It is also suggested that instead of thinking of the expectation value of

variable as a statistical average of its eigenvalues, one can think of the

expectation value as a quantum average of weak values [4].

〈Ψ|Ô|Ψ〉 =
∑
j

|〈bj |Ψ〉|2
〈bjÔ|Ψ〉
〈bj |Ψ〉

=
∑
j

P (bj |Ψi)〈Ô〉W,bj

(4.7)

where |bj〉 is the eigenvector of the post selection operator B. The

argument is that since traditionally the expectation value is only calculated

using an initial condition (pre selected state), it is the weighted sum of the

expectation of a pre and post selected system for all possible post selected

states.

Even though the TVSF attempts to offer an interpretation of the weak

value, their success in explaining why they can in some cases lie outside

the range of eigenvalues is debatable if not unsatisfying. In the literature,
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there is very little said for what the “eccentric” weak values mean, that is

the weak values that lie outside the range on eigenvalues of the operator

like for the AAV effect. It is simply justified using the mathematical fact

that complex amplitudes of superposition are responsible for this effect, as

discussed in section 3.2 and that the stranger the value, the rarer it is. In

other words, there is a very low probability of the state collapsing to the

post selected states that are correspond to the eccentric weak values. The

TVSF interpretation of the weak value is also quite radical in a sense as

it considers it a physical property.

“...the weak value of A, (which) is to be regarded as a definite physical

property of an unperturbed quantum system in the time interval between

two complete measurements.”-Y.Aharonov [4].

This implies that a physical property of a system is allowed to lie outside

the spectrum of eigenvalues of its operator. This requires a complete re-

evaluation of the Quantum theory. In the next section, I will offer a simple

explanation as to why I think the weak value cannot be given the status

it has been given in this formalism and more importantly show that the

spin of a spin 1
2 particle can not be 100.

4.2 Entangled

For a moment, forget about weak measurements or any measurement at all

and just consider entanglement. Assume, the states of two objects, object

G and object H are entangled. They become entangled by evolving under

a unitary operator U. Now assume there are N copies of these entangled

pair of objects. G and H are entangled in such a way that the probability

distribution of the position of G being q ,given that the measurement of

variable VH of H has outcome v is a gaussian centred around a particular
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value zeta.

To reiterate,

Pr(QG = q|VH = v) = ce−
(q−ζ)2

2b2 (4.8)

Note that, G is not ”feeling” anything from H, it is typical entanglement,

where the probabilities of certain measurement outcomes of G and H are

correlated. One cannot immediately claim that G is in any way measuring

any variable of H.

Now, only if G and H were entangled in a such a way that the probability

of the position of G being q is centred around a value, which happens to be

the expectation value of a variable X of H, then the probability distribution

of the position of G can be used to find this expectation value. Only now

can we say that G is used to measure 〈X〉 of H and can be considered

a measuring device in any sense. A measuring device, is a device that

gives you information on the quantity it is measuring, which in this case

is 〈X〉 of H. Now if one only considers the pairs in which the measurement

of variable VH of H has outcome v, then the probability distribution of

the position of G is given by (4.8), where the gaussian is centred around

value ζ. For this specific subset of the entangled pairs, G can no longer

be considered a measuring device because it is not measuring anything!

We cannot deduce from it the expectation of X, hence it is no longer a

measuring device used to measure 〈X〉 of H. Only if ζ happened to be a

specific quantity of H, would we consider G a measuring device specifically

for measuring that particular quantity of H. Otherwise G and H are merely

two entangled particles and nothing more.

It is now easy to see how this argument lends itself to the situation of

weak measurements. The object referred to as the ”measuring device” is a

measuring device that can only be used for measure the expectation value
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of variable Â of the particles. This is because, its probability distribution

happens to be peaked at the value 〈Â〉. However by only using a post

selected subset of devices, we alter its probability distribution so it is no

longer peaked around value 〈Â〉. Hence it is no longer a measuring device

for measuring 〈Â〉 of the particle. It is now nothing more than an entangled

particle.

One might now ask, then what is the expectation of Â of |Ψi〉 given that

a measurement of the operator B̂ on it has yielded the value b. However

there is a fundamental error in asking this question. In asking this ques-

tion, one is confusing the state of the particle with the individual particle

itself. The state of the individual particle changes every time, we extract

any information about it. Even in the limit of weak measurements, the

individual measurements are only weak because, we are extracting almost

no information about that individual particle by measuring it. The reason

this is perhaps confusing is because weak measurements creates the illu-

sion that Â of the state |Ψi〉 is first measured, after which it evolves almost

in the same state to further have B̂ measured. However, this is clearly not

true. As emphasised earlier the only quantity being measured is the 〈Â〉

of the ensemble by exploiting its entanglement with the ”device”. We are

not measuring Â of the individual particles in state |Ψi〉. If we did it would

most definitely collapse into an eigenstate of Â and would no longer have

anything to do with the state |Ψi〉.

So a more sensible question to ask would be, what is the expectation

value of Â for the specific pre and post selected subset of particles. We

can calculate this easily. Let the size of the pre selected ensemble be Np.
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Then the number of states that collapse to |aj〉 is

|〈Ψi|aj〉|2Np. (4.9)

The number of |aj〉 states that then collapse to the post selected state |b〉

is

|〈b|aj〉|2|〈Ψi|aj〉|2Np. (4.10)

The size of the pre and post selected ensemble is therefore

∑
j

|〈b|aj〉|2|〈Ψi|aj〉|2Np. (4.11)

Hence the probability of A = aj for particles in the post and pre selected

ensemble are

P (A = aj |pre, postselection) =
|〈b|aj〉|2|〈Ψi|aj〉|2∑
k |〈b|ak〉|2|〈Ψi|ak〉|2

. (4.12)

Finally the estimate of the pre and post selected ensemble of particles is

〈Â〉pre,post−selected =
∑

j

|〈b|aj〉|2|〈Ψi|aj〉|2∑
k |〈b|ak〉|2|〈Ψi|ak〉|2

aj (4.13)

where aj is the jth eigenvalue of Â. Equation (4.12) is known as the

Aharonov-Bergmann-Lebowitz (ABL) formula, which was first introduced

in [3] in order to calculate probabilities for pre and post selected ensembles.

This expression is the same irrespective of whether one measured Â first or

B̂ showing that their is no time asymmetry in calculating this conditional

expectation value. Note that 〈Â〉pre,post−selected 6= 〈Â〉W and reassuringly,

can never be greater than eigenvalues of Â as the weights are positive

definite and hence the average spin of spin 1
2 particles can never be a 100.
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Here, I should perhaps clarify that, I am not saying that the mathemat-

ics in calculating the weak value is incorrect or that it is not experimentally

realisable. Of course if one carried out, the weak measurement + post se-

lection protocol experimentally, they would indeed have the distribution

of their ”measuring” variable peak at the weak value. However, this does

not make the weak value a meaningful physical property of the particle.

Moreover, interpreting it as an expectation value of the variable for the pre

and post selected ensemble is not justified. The debate of what is physical

or unphysical is a somewhat slippery slope and unrelated to the point I

am making here. The point I am making here is that the weak value of Â

has as much physical meaning as an arbitrary function Â.

In conclusion, by only using the post selected ensemble to calculate the

expectation of Â, from the probability distribution of the “devices”, one

is not measuring any characteristic of the particles or ensemble of any

physical meaning. 〈Â〉W is merely an artefact of the correlated probability

distributions of the particle and the “device” due to their entanglement.
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5 The Weak Value solves Quantum

Paradox?

In this chapter, I will illustrate, furthur the general interpretation of the

the weak value by showing how its use claims to solve a counter- factual

paradox.

5.1 The Cheshire Cat

In [5], an experiment is suggested, to show that physical properties of an

object can be separated from the object itself. The experiment claims

to separate the polarisation of a photon from the photon so that at a

particular time, the photon could be in one place with its polarisation in

another.

The pre selected state is

|Ψi〉 =
1√
2

(|L〉+ |R〉)|H〉, (5.1)

where |L〉 and |R〉 are states corresponding to the photon being in the

left and right arms of the interferometer respectively. |H〉 refers to the

horizontal polarisation of the photon. This is achieved by passing a hori-

zontally polarized photon through a 50:50 beamsplitter (BS1) as shown in

figure 5.1. The detectors in the left and right arms perform measurements
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Figure 5.1: Measurement setup (copied from [5]).

on the photon. We shall come back to the type of measurement performed

shortly. The photon then travels towards the second beamsplitter (BS2).

Just before the BS2, there is a half wave plate (HWP) on the right arm,

which changes the polarisation of a vertically polarised photon to a hori-

zontally polarised photon.

HWP : |V 〉 ←→ |H〉. (5.2)

The second beam splitter performs the following function:

BS2 :


1√
2
(|L〉+ |R〉) −→ |L′〉

1√
2
(|L〉 − |R〉) −→ |R′〉

where |L′〉 carries on towards to polarising beam splitter (PBS) and |R′〉

29



travels towards detector D2. The PBS performs the following function:

PBS :

 |L
′〉|H〉 −→ |L′′〉

|L′〉|V 〉 −→ |R′′〉

where |L′′〉 carries on towards D1 and |R′′〉 travels towards detector D3.

Hence if D1 clicks then we are certain that the state just before the

HWP was

|ΨPS〉 =
1√
2

(|L〉|H〉+ |R〉|V 〉). (5.5)

This is the post selected state. So we only take into account measurements

when D1 clicks.

Firstly let us set the detectors in each arm to check which arm the

photon passes though. The corresponding projection operators for this

are

ΠL = |L+〉〈L+ |+ |L−〉〈L− | (5.6)

ΠR = |R+〉〈R+ |+ |R−〉〈R− | (5.7)

where |+〉 and |−〉 are the eigenstates of the Pauli X operator σx and

correspond to the diagonal polarisation of the photon.(|H〉 = 1√
2
(|+〉 +

|−〉and|V 〉 = 1√
2
(|+〉 − |−〉).

Now if we look at the post selected state, one can see that it is orthogonal

to

|ΨR〉 =
1√
2

(|R+〉+ |R−〉) (5.8)

which is the state of collapse if the photon is detected in the right arm.

Hence for the post selected ensemble, the probability of the measuring
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device finding the photon in the right arm is 0.

However if the measuring device checks for the polarisation of the photon

corresponding to the σxin the right arm, then projectors for the measure-

ments are

ΠR+ = |R+〉〈R+ | (5.9)

ΠR− = |R−〉〈R− | (5.10)

Hence after the measurement the photon will either be in state |R+〉 or

|R−〉 or 1√
2
(|L+〉+ |L−〉. And neither |R+〉 or |R−〉 are orthogonal to the

post selected state, hence the probability of finding these outcomes is non

zero for the pre and post selected ensemble. Therefore the paradox lies

in the fact that the probability of detecting the photon in the right arm

is zero for the post selected ensemble but the probability of detecting its

polarisation is the right arm is not zero.

This is a counter-factual type of paradox as the contradiction disappears

when one makes the measurements. For example when a measurement of

polarisation is the right arm detects a non zero polarisation, then the

photon too is found in the right arm. Hence one is not able to isolate the

polarisation of the photon from the photon by doing strong measurements.

It is suggested that performing weak measurements could however achieve

this Cheshire cat like result [5]. Here we will focus on the theoretical

results. For a detailed description of the experimental set of such weak

measurements, I refer the reader to [10].

Since the expectation value of a projector is the probability of the out-

come corresponding to the projector, the authors suggest that one could

measure the weak value of the projectors to ascertain the probabilities of

the corresponding outcomes. The weak value of finding the photon in the
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left arm is

〈ΠL〉W =
〈ΨPS |ΠL|Ψi〉
〈ΨPS |Ψi〉

= 1 (5.11)

and the weak value of finding the photon in the right arm is

〈ΠR〉W =
〈ΨPS |ΠR|Ψi〉
〈ΨPS |Ψi〉

= 0. (5.12)

The weak value of σ̂x in the right arm corresponds to the weak value of

σ̂Rx = (|R〉〈R|)⊗ (|+〉〈+| − |−〉〈−|) (5.13)

and the weak value of σ̂Rx is

〈σ̂Rx 〉W =
〈ΨPS |σ̂Rx |Ψi〉
〈ΨPS |Ψi〉

= 1 (5.14)

Since these measurements are weak, the measurement leaves the state of

the photon unaffected and therefore, the weak measurement of the polar-

isation of the photon in the right arm can give a non trivial result whilst

the weak value of the projection operator corresponding to the photon

being in the right arm is 0. According to [5],[12], these results show that

the polarisation of the photon can be disembodied from the the photon

itself. This conclusion can only be drawn if the weak value of an operator

is interpreted exactly like its expectation value under conditions of weak-

ness and pre and post selection. However this kind of a straightforward

interpretation is not justified. Especially equating the weak value of a pro-

jection operator to a probability can be very problematic. One can see, by

looking at the expression for the weak value of a projector, that when

〈ΨPS |Π|Ψi〉 > 〈ΨPS |Ψi〉, (5.15)
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the weak value can be greater than 1. Also if

〈ΨPS |Ψi〉 < 0, 〈ΨPS |Π|Ψi〉 > 0 (5.16)

then the weak value is negative. Thus interpreting these weak values as

probabilities, as the authors of [5] have done, would mean getting proba-

bilities greater than 1 and even negative probabilities. However this does

not make sense as it goes against the very definition of probability. In

fact, I see this as proof that this kind of interpretation of the weak value

is wrong. In the paper [5], it was a convenient choice of post selected state

that lead to weak values that could be sensibly interpreted as probabilities.

I will now illustrate by choosing a different post selected state, the strange

“probabilities”. Let the post selected state of the photon be

|Ψ′PS〈=
1√
3
|LH〉+

2√
3
|RH〉 (5.17)

For the same pre selected state the weak values for the left and right

projectors are

〈ΠL〉W =
〈Ψ′PS |ΠL|Ψi〉
〈ΨPS′ |Ψi〉

=
1√
6

(
1√
6
− 1√

3
)−1

≈ −2.4

(5.18)
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〈ΠR〉W =
〈Ψ′PS |ΠR|Ψi〉
〈ΨPS′ |Ψi〉

= − 1√
3

(
1√
6
− 1√

3
)−1

≈ 3.4

(5.19)

Therefore, one can see that if we accept the interpretation of weak values

of projectors as probabilities, then unless we post select our state carefully,

we get probabilities that are greater than 1 and also negative. And because

the claim of finding the Cheshire cat is only valid under this interpretation,

it is most likely that we have not found the Cheshire cat.
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6 Weak Value in a hidden variable

theory

Here I shall investigating weak measurements using a semi-classical hidden

variable theory called epistemically-restricted Liouville mechanics (ERL

mechanics). The aim is to understand the interpretation of the weak value

within a hidden variable theory of quantum mechanics.

6.1 Introduction to Wigner functions and Weyl

transformations

Wigner functions introduced by Wigner in 1932 [15] maps a Quantum

wave function to a probability distribution is phase space. It should how-

ever be thought of as a quasi-probability distribution as some wave func-

tions result in Wigner functions that are negative in some regions of phase

space. Here we shall consider only wave functions that have a non-negative

Wigner function everywhere is phase space. A pure state that obeys this

condition if and only if it is described by a wave function whose magnitude

is Gaussian in configuration space i.e a wavefunction of the form

Ψ(q) = e
1
2

(aq2+2bq+c) (6.1)
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where a,b and c are complex numbers with Re(a) > 0 [14]. A sub-theory of

Quantum mechanics about this specific subset of Quantum states is know

as Gaussian Quantum theory. Since ERL mechanics is a hidden variable

theory for Gaussian Quantum states, we shall consider, the Wigner func-

tion as proper probabilistic distribution within this theory. In this section,

I fill very briefly introduce Wigner functions by including just key defini-

tions and results. For a more detailed introduction, I refer the reader to

[9].

The Wigner function is defined as

W (p, q) =
1

2π

∫
e−ipyΨ(q +

y

2
)Ψ∗(q +

y

2
)dy (6.2)

or alternatively as

W (p, q) =
1

2π

∫
e−ipuΨ̃(p+

u

2
)Ψ̃∗(q +

u

2
)du (6.3)

where Ψ(q) is the position space wavefunction and Ψ̃(p) is the momentum

space wavefunction. The following results justify the Wigner function as

a quasi-probabilistic distribution in phase space:

∫
W (q, p)dp = Ψ(q)Ψ∗(q) (6.4)

∫
W (q, p)dq = Ψ̃(p)Ψ̃∗(p) (6.5)

∫ ∫
Wa(q, p)Wb(q, p)dqdp =

1

2π
|〈Ψa|Ψb〉|2. (6.6)

The Weyl transform is used to transform an operator Â from configu-
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ration space to phase-space. It is defined as

A(q, p) =

∫
e−ipy〈q +

y

2
|Â|〈q − y

2
〉dy (6.7)

where Â is basis of the position eigenstates. Equivalently, if Â is in basis

of the momentum eigenstates, then

A(q, p) =

∫
e−ipu〈p+

u

2
|Â|〈p− u

2
〉du. (6.8)

If Â is only a function of q̂ i.e Â = f(q̂), then

A =

∫
e−ipy〈q +

y

2
|(q̂)|〈q − y

2
〉dy

=−ipy f(q − y

2
)δ(y)dy

= f(q)

(6.9)

Similarly If Â is only a function of p̂ i.e Â = f(p̂), then A = f(p). The

expectation of Â can be calculated as

〈Â〉 =

∫ ∫
W (q, p)A(q, p)dqdp. (6.10)

The wavefunction can be recovered from the Wigner function unto a phase

factor by

Ψ(q) =
1

K

∫
W (

q

2
, p)eipqdp (6.11)

where |K| can be determined by the normalisation of the wavefunction.

6.2 ERL mechanics

In this section, I will introduce ERL mechanics focussing on specific re-

sults which we will require to investigate weak measurements. For proofs
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of the results and a full description of this theory, I refer the reader to

the original paper [8]. The main purpose of ERL mechanics is to show

that it is possible to derive Gaussian Quantum mechanics from Liouville

mechanics by adding an epistemic restriction. In other words, by applying

a restriction on our knowledge of a classical system, which is described by

a probability distribution in phase space, we are able to recover Gaussian

Quantum theory.

6.2.1 Quantum mechanics

In Quantum mechanics, the commutations relation between the position

and momentum of a system is be summarised by the expression

[ẑi, ẑj ] = ih̄ζij (6.12)

where ζij = δi,j+1− δi+1,j , ẑ2i−1 = q̂i, that is the ith position of the system

and ẑ2i = p̂i, which is its conjugate momentum.(Note just in this section,

we are no longer using units where h̄ = 1 for the purposes of introducing

the Classical uncertainty principle) For a state described by density matrix

ρ, the vector of the means of its canonical operators is

〈ẑi〉i = Tr(ρẑi) (6.13)

and it covariance matrix is

γij = Tr(ρ(ẑi − 〈ẑi〉i)(ẑj − 〈ẑi〉j))− ih̄ζij . (6.14)
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The Quantum uncertainty principle can be expressed in terms of the co-

variance matrix as

γ + ih̄ζ ≥ 0 (6.15)

which is preserved by all unitary transformations.

6.2.2 Liouville mechanics

Classically, the relation between phase space can be summarised by an

equation similar to its Quantum counterpart

{zi, zj} = ih̄ζij (6.16)

where the poisson brackets have replaced the commutator. Instead of a

density matrix, a system is described by a probability density distribution

in phase space µ(~z) which belongs to the set L+(M)

L+(M) = {µ(~z)s.t.µ : M → R,µ(~z) ≥ 0, |µ| = 1} (6.17)

where M is the phase space manifold i.e ~z ∈ M where the norm of a

function is defined as

|µ(~z)| =
∫
M
d~zµ(~z). (6.18)

The covariance matrix of the system described by µ is

γij = 2〈(zi − 〈zi〉i)(zj − 〈zi〉j))〉. (6.19)

The only constraint imposed on the covariance matrix in Liouville me-

chanics is

γ ≥ 0. (6.20)
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Thus to recover the uncertainty principle, one must put in another re-

striction as an axiom. The restriction that achieves this result is called

the Epistemic restriction and is defined as follows:

Epistemic Restriction [8]- A phase space distribution µ can describe

an observer’s state of knowledge if and only if it satisfies

1. The classical uncertainty principle:

γ + iλζ ≥ 0 (6.21)

2. The maximum entropy principle: For a particular covariance matrix,

the distribution should maximise the entropy

S(µ) = −
∫
M
µ(~z)logµ(~z)d~z. (6.22)

Setting λ = h̄ recovers the Quantum uncertainty principle and the max-

imum entropy principle is necessary for bijective mapping, that is so that

the number of possible phase space distributions does not exceed the num-

ber of quantum states for a given covariance matrix.

The distributions satisfying the epistemic restriction can be shown to

be of the form [8]

µ(~z) =
1

(2π)ndetγ1/2
e1/2(~z−〈~z〉)T γ−1(~z−〈~z〉). (6.23)

The classical uncertainty principle and the maximum entropy principle

are only preserved under linear symplectic transformations. A symplectic

transformation is defined as a square matrix A such that A † ζA = ζ and

transform the phase space vectors as

~z → A † ~z (6.24)
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and a linear symplectic transformation is a the subset that acts lineally

on the canonical coordinates. These are the only type of transforma-

tions allowed within ERL mechanics to ensure an epistemic state is always

transformed to another valid epistemic state. A feature of these transfor-

mations is that the uncertainty about a system cannot decrease as a result

of a symplectic transformation.

In Quantum mechanics, two quantities of a system, G and H can be

jointly known only if they commute i.e.

[Ĝ, Ĥ] = 0 (6.25)

but in ERL mechanics, G and H can be jointly known only if

{Ĝ, Ĥ} = 0 (6.26)

where the Poisson bracket is defined as

{Ĝ, Ĥ} =
∑

i(
∂G

∂qi

∂H

∂pi
− ∂G

∂pi

∂H

∂qi
) (6.27)

This is not true for deducing the state of a system in the past by post se-

lection. For example, if the initial state of the system is one where we have

complete certainty about its position qs and then measure its momentum

with outcome ps, then we can deduce that before the measurement the

system’s position was qs and momentum was ps. In this way we know

both the position and momentum of a system at a particular time in the

past even though p and q do not commute with the poisson bracket. It

is however not possible to jointly know the value of the variables that

do not commute with the Poisson bracket for the present or be able to
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predict their values with certainty in the future. This is because of the

disturbance induced by the process of measurement. The disturbance,

caused by a measurement is of two forms. The first is the disturbance to

the epistemic state, that is that the state collapses to the outcome of the

measurement from a probability distribution over its values. The second

disturbance is a physical disturbance due to the measuring device. This

is a disturbance to the ontic state of the system. For example, in order

to measure the position of a system, you couple it to the device under a

Hamiltonian

H = χ(t)qspd (6.28)

where qs is the position of the system and pd and
∫ T

0 χ(t) = χ is the

momentum of the device. From Hamiltonian mechanics we know that the

equation of motion for the position of the device is

dqd
dt

=
∂H

∂pd

⇒qd = qd,int + χqs

(6.29)

where qd,int is the initial position of the device. So if we know the initial

position of the device, then we can measure the position of the system.

However, having complete certainty about the initial position of the device

implies that we have no knowledge of its initial momentum. From the

equation of motion of the system

dps
dt

= −∂H
∂qs

⇒ps = ps,int − χpd
(6.30)

one can see that the momentum of the system changes due to the momen-

tum of the device, but since we have no knowledge of the value of pd, we
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have no knowledge of the shift in momentum of the system. Hence, in the

process of measuring the position of the system, we lose all knowledge of

its momentum.

In ERL mechanics, all dynamics of physical systems are classical, that

is all their ontic states behave classically. It is only the observer’s lack of

knowledge that gives the illusion of states behaving like quantum states. It

has been shown that ERL mechanics is operationally equivalent to Gaus-

sian quantum mechanics[8]. This means that any phenomenon that is

possible in Gaussian quantum mechanics is reproducible using ERL me-

chanics. With this guarantee in mind, we will now proceed to find the

weak value within ERL mechanics.

6.3 The weak value in ERL mechanics

In this section we will weakly measure the position of a system and then

post select using the operator

A = cos θq + sin θp. (6.31)

Let the state of the measuring device be described by the following

covariance matrix (in this section we return to using units where λ = h̄ =

1):

γd =

 2σ2 0

0 (2σ)−2



A state described by this covariance matrix is a minimum uncertainty state

as det(γ − iζ) = 0. The probability distribution for this covariance matrix
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that obeys the maximum entropy principle is

µ(qd, pd) = Ga,σ(qd)Gf,1/(2σ)(pd) (6.33)

where

Ga,σ(qd) =
1

2
√
πσ

e−
(qd − a)2

4σ2
(6.34)

and

Gf,1/(2σ)(pd) =
1

2
√
π(2σ)− 1

e−
(pd − f)2

4(2σ)−2
. (6.35)

The system is a state where we know its momentum and hence have no

knowledge of its position. This is described by

ν(qs, ps) = δ(ps − ps,int) (6.36)

The interaction Hamiltonian is

H = χ(t)qspd (6.37)

where χ obeys ∫ T

0
χ(t) dt = 1. (6.38)

If the position of the device before the measurement is qd,int, then after

the measurement, it will be shifted to qd,int + qs,int, i.e. by the position of

the system. This is because

dqd
dt

=
∂H

∂pd
= χ(t)qs. (6.39)
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The momentum of the device will remain unchanged as

dpd
dt

= −∂H
∂qd

= 0 (6.40)

Hence the epistemic state of the device is now described by the probability

distribution

µ′(qd, pd) =

∫ ∫
µ(qd − qs, pd)ν(qs, ps)dqsdps

=

∫
µ(qd − qs, pd)dqs

(6.41)

The momentum of the system after the measurement is ps,int − pd,int

where pd,int is the momentum of the measuring device. This is because

dps
dt

= −∂H
∂qs

= −χ(t)pd (6.42)

and obviously its position is unchanged as it is the quantity we are trying

to measure. Therefore the probability distribution of the system is now

ν ′(qs, ps) =

∫ ∫
ν(qs, ps + pd)µ(qd, pd)dqddpd

=

∫
ν(qs, ps + pd)Gf,1/(2σ)(pd)dpd

=

∫
δ(pd − (ps,int − ps))Gf,1/(2σ)(pd)dpd

= Gf,1/(2σ)(−ps + ps,int)

(6.43)

In the limit where the uncertainty in pd approaches 0

lim
(2σ)−1→0

= Gf,1/(2σ)(−ps + ps,int) = δ(ps − ps,int + f) (6.44)
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Thus if f = 0

ν ′(qs, ps) = δ(ps − ps,int)

= ν(qs, pd)

(6.45)

Hence if the condition for weakness is satisfied, that is the momentum of

the measuring device is sharply peaked around 0, then the epistemic state

of the system is unchanged. However this implies that the uncertainty in

the position of the device σ → inf, which means we cannot measure the

position of the system in one measurement. Hence we need to measure

the position of a large ensemble of particles to determine the expectation

of the position of the particle.

We post select states where cos θqs + sin θps = b. We can use equa-

tion (6.41) to determine the probability distribution of the post selected

ensemble of devices.

µ′′(qd, pd) =

∫
µ(qd − (b− sin θps)/ cos θ, pd)ν

′((b− sin θps/) cos θ, ps)dps

=

∫
µ(qd − (b− sin θps)/ cos θ, pd)δ(ps − ps,int)dps

= µ(qd − (b− sin θps,int)/ cos θ, pd)

(6.46)

We can therefore see that, the measurement causes the probability dis-

tribution of the position of the device to be shifted by the value (b −

sin θps,int)/ cos θ. One can see that this is because, the weak measurement

does not disturb the initial state of the system leaving it almost unchanged.

This means that even after the measurement, the measuring device still

has its original momentum ps,int and since we only post select states where

cos θqs+sin θps = b, the position of the state is (b−sin θps,int)/ cos θ, which
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is what the position of the device is shifted by.

Now let us calculate the Weak value for the equivalent quantum system.

The weak value of the system is

〈q̂〉W =
〈b|q̂|Ψ〉
〈b|Ψ〉

=

∫
q〈b|q〉〈q|Ψ〉dq∫
〈b|q〉〈q|Ψ〉dq

(6.47)

where Ψ is the initial state of the particle which can be found,using (6.11)

to be |ps,int〉 and and 〈b| if the eigenstate of operator B̂ = cos θq̂ + sin θp̂

with eigenvalue b. The overlap 〈b|q〉 is

〈b|q〉 =
1

2π sin θi

1/2

e−i(bq/ sin θ−cot θq2/2) (6.48)

This is found by solving the following differential equation for Φ(q) which

is the wave function of |b〉 in position space, that is B̂Φ(q) = bΦ(q).

cos θq − i sin θ
dΦ

dq
= bΦ (6.49)

The overlap 〈q|Ψ〉 = e−ips,intq as Ψ = |ps,int〉. Putting the overlaps back

into (6.47) gives us the weak value of the position of the system, which is

〈q̂〉 = (b− sin θps,int)/ cos θ. (6.50)

This is exactly the value the probability distribution of the position of

the device is shifted by. Hence in this case, the weak value of the system

does give a conditional expectation value. This is perhaps obvious for a

hidden variable model, as the particle has a well defined position at all

times which causes a proportional shift in the device. However this cannot

immediately be extended to answer most of the surprising features of the
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weak value. This result is true only for a specific subset of quantum states.
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7 Conclusion

From this report, it is clear that the interpreting the the weak value is

problematic. It’s interpretation is dependant on whether one considers

the quantum state, the ontic state of a system or adopts a hidden variable

interpretation where the quantum state is a manifestation of the observer’s

lack of knowledge. For example if one adopts the view of the quantum state

being epistemic, then each particle’s position produces a small shift in each

device and hence after post selection, the probability distribution of the

devices will indeed be shifted by the mean of the position of the particle.

However if one adopts the ontic view of the quantum state, then it can be

argued that if the particle is not in a position eigenstate, then the particle

does not have a defined position value. In this case the weak value is little

more than a manifestation of the entanglement between the particles and

the device.

Whereas with other functions in quantum mechanics, the interpretation

of quantum mechanics itself does not govern its proper use, we have seen

that this is not the case with the weak value. We have seen how the using

the weak value as truly a conditional expectation value, leads to some

surprising effects such as the average spin of spin 1/2 particles being a 100

and probabilities that negative and larger than 1. This to some can be

seen as evidence that such an interpretation of the weak value is incorrect.

However, I think, the reason for the debate over the interpretation of the
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weak value despite it giving strange results is because the quantum theory

is so strange in many ways, it is difficult to detect when a result is too

strange to be real. As the axioms of quantum theory are not held sacred,

one cannot immediately disprove a result by showing it contradicts an

axiom of Quantum mechanics. If we did hold Quantum axioms sacred,

then the fact that the weak value of spin of spin 1
2 particles could be 100

would be proof that the weak value cannot be interpreted as an expectation

value of a physical property of a particle under any circumstances. It can

be argued that because we truly understand Quantum mechanics so little,

it is difficult to understand how to interpret a quantity correctly within

the theory.

On the other hand, if the interpretation of the weak value as a condi-

tion expectation violated any mathematical axioms, some may be more

persuaded to believe that this interpretation is incorrect. This would then

in turn be very strong evidence for that the quantum state is not epis-

temic. One might say that, interpreting the weak value as a conditional

epectation already does violate a mathematical axiom by yielding negative

probabilities or probabilities greater than 1. However, the concept of neg-

ative probabilities is not new in physics, which shows that this might not

be enough to convince everyone that the weak value cannot be interpreted

as the conditional value. I would like to conclude by emphasising that

we can interpret the weak value as an expectation value if and only if we

do not see the quantum state as the ontic state of the system, that is for

particle’s characteristic to be defined at anytime regardless of whether it

is measured or not.
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